

Simulation and optimisation technologies supporting Refinery operation Planning and Scheduling

> Aurelio Ferrucci Executive V.P. aurelio.ferrucci@prometh.it www.prometh.it

WHERE DO WE COME FROM ?

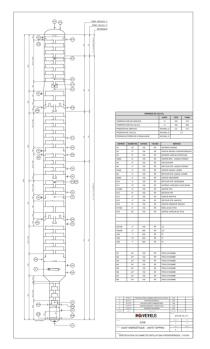
DR. ALBERTO FERRUCCI

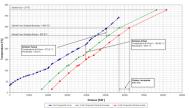
METHEUS

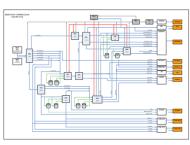
- Genoa ERG Refinery (late 60'): as shift operator improves CDU train with 50°C Furnace Inlet increase.
- Priolo ISAB Refinery
 - (1972-1976) feasibility, project planning, engineering, procurement, construction, start-up, management.
 - ✓ (1977) appointed CEO of ISAB.
 - ✓ (1979) oil crisis, crude price skyrockets: "wrong refinery in the wrong place in the wrong moment"
 - ✓ (1981) 1st Mild Hydro Cracker of the world
 - ✓ (1983) 1st Real Vacuum Pitch Visbreaking
- Genoa Refinery: (1980) saves it from Bankruptcy
- 1985 with ISAB profits buys Chevron's Italian Assets and becomes the first Italian private downstream operator.
- 1985 appointed ERG Group VP and ISAOIL (ex Chevron Italy) President
- 1986 Starts Prometheus

2011: Lukoil buys ISAB refinery for 2.0 Billions USD

PROMETHEUS


METHEUS


• We help various operators worldwide


- ✓ Italy (IPLOM, IES, API)
- Former Soviet Union (UFA and Odessa Refineries)
- Mediterranean Area (Egypt, Libya, Tunisia)
- India (HMEL)

Providing Consulting Services

- Strategic consulting, feasibility studies
- Technical assistance
- Process design studies
- and Software solutions: Prometheus DSS
 - Crude oil characterisation
 - LP Refinery Optimisation
 - Blending Optimisation
 - Operation Scheduling
 - Plant simulation / monitoring

METHEUS

SPECIALISED CONSULTING

Surveys

assess current Performance and highlight minor modifications permitting to overcome production bottlenecks and to improve global profitability

• Feasibility Studies

highlight solutions to cope with operational changes or evaluate process modifications

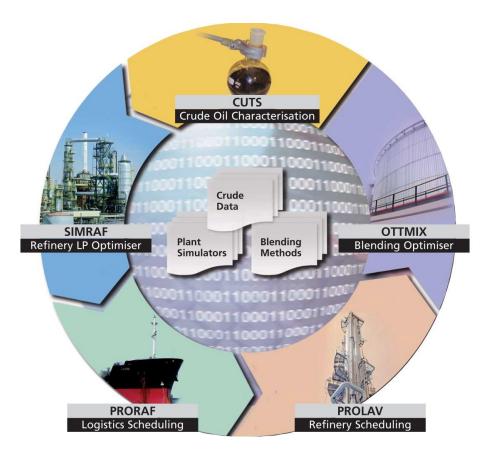
Conceptual Engineering

process design of modifications of existing units aimed to reach new operational targets (heat & material balances, thermodynamic calculations, equipment sizing, issue of datasheets, PFDs & P&IDs)

Energy Audits

improve Energy Performance Fuels optimisation, heat transfer and heaters efficiency, utilities and fuels balances, emissions control

LP Audits

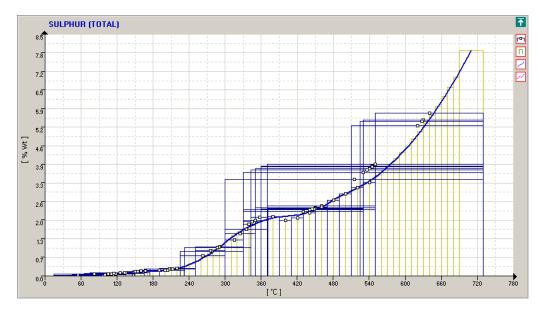

assess the reliability of the existing LP model, verify its capability to model in a satisfactory way the specific operative flexibilities

DECISION SUPPORT SYSTEM TOOLS

Designed specifically for refinery professionals trigger the diffusion of a common "techno-economic mentality" in refinery services.

A framework of integrated technologies to support Supply Chain Management tasks.

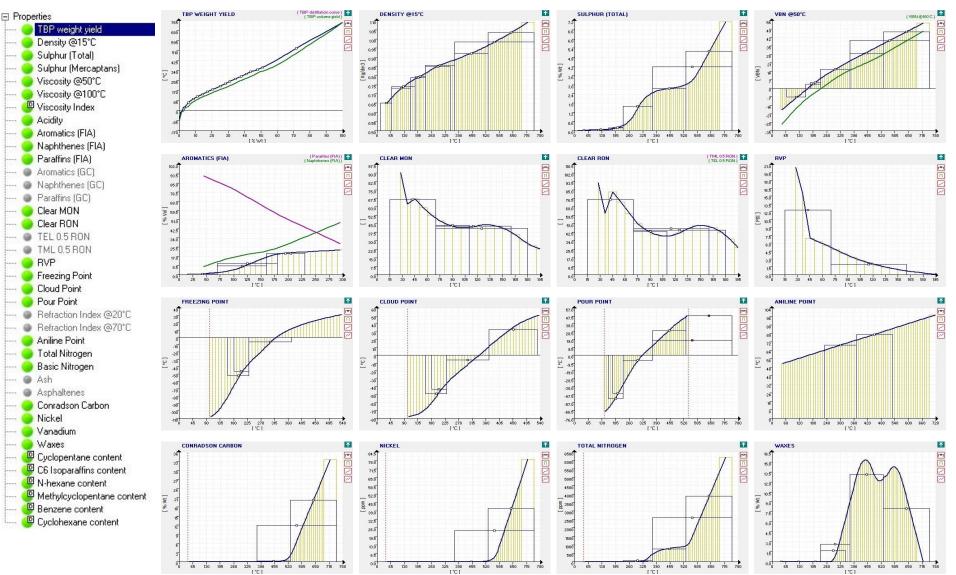
- ... Oil Characterisation
- ... LP Optimisation
- ... Scheduling
 - ... Logistics
 - ... Processing
 - ... Blending



CUTS™: CRUDE ASSAY DATA REGRESSION

"Multi-dimensional regression" characterises crude oils by pseudo - components (narrow cuts) generating information required by processing simulation.

<u>Crude Assay data are not independent</u>: the regression considers at the same time fractions quality balances and distribution shapes.


The system predicts well all characterisation data required for operation Planning and Scheduling activities (~30 fundamental properties plus derived).

CUTS	Initial Temp. [°C]	Final Temp. [°C]	Input [% Wt]	Calculated [% Wt]	Difference Input-Calc.	Difference [%]
BULK	-88.6	730.0	1.880	1.892	-0.012	-0.64 %
C01	15.0	95.0	0.023	0.023	0.000	0.00 %
C06	15.0	149.0	0.056	0.056	0.000	0.00 %
C02	65.0	135.0	0.050	0.050	0.000	0.00 %
C03	65.0	145.0	0.062	0.062	0.000	0.00 %
C04	75.0	145.0	0.069	0.067	0.002	2.90 %
C07	65.0	165.0	0.085	0.086	-0.001	-1.18 %
C05	90.0	145.0	0.073	0.073	0.000	0.00 %
C09	75.0	175.0	0.106	0.104	0.002	1.89 %
C10	90.0	175.0	0.111	0.111	0.000	0.00 %
C11	95.0	175.0	0.120	0.119	0.001	0.83 %
C08	135.0	165.0	0.150	0.150	0.000	0.00 %
C12	135.0	175.0	0.160	0.162	-0.002	-1.25 %
C13	145.0	175.0	0.175	0.175	0.000	0.00 %
C14	145.0	190.0	0.180	0.180	0.000	0.00 %
C16	149.0	232.0	0.190	0.194	-0.004	-2.11 %
C15	175.0	225.0	0.195	0.192	0.003	1.54 %
C17	175.0	232.0	0.200	0.200	0.000	0.00 %
C18	165.0	250.0	0.240	0.239	0.001	0.42 %
C19	175.0	250.0	0.245	0.246	-0.001	-0.41 %
C20	190.0	250.0	0.260	0.260	0.000	0.00 %
C21	225.0	300.0	0.710	0.695	0.015	2.11 %
C22	250.0	300.0	0.880	0.858	0.022	2.50 %

CUTS™: PROPERTIES

R // METHEUS

CUTS™: SOURCE DATA

Tab. 1b	: ASTM D28	392		L	Tab.	4: GAS	OILS			
TBP	DISTILLATE	cu		TBP RANGE	-	°C	230-320	320-370	\$70-400	i e a
OUT POINT	% ON CRUDE	%		VIELD % ON C	RUDE	% m/m	21.63	9.21	4.66	ASTM D 28
°C	i m/m					% v/v	21.41	8.66	4.29	1
Gas+Gpl	0.4			L				4.00		
80	3.5		_	DENSITY @ 15°C			0.8397	0.8843	0.9024	
100	3.6			SPECIFIC GRAVITY @ 60/60°F		Kg/l				ASTM D 40
120	3.9			API GRAVITY @ 60/60°F			0.8401	0.8848	0.9029	
14C	4.0		-	API GRAVITY @ 50/50"P		-	36.9	28.4	25.2	
160	2.4			CHRISTIN D						
160	2.1	S				%m/m	0.04	0.18	0.21	ASTM D 429
180	4.4			NITROGEN (Total)	-	ppm			970	ASTM D 462
210	5.2			BASIC NITROGEN		ppm			384	UOP 313
230	4.5	and the second sec	-	ACIDITY (Total)		mg KOH/g	0.04	0.18	0.30	ASTM D 974
250	4.1			WAX		%m/m			7.29	BP 237
270	4,2	_	100 million and 10	CLOUD POINT		°C	-24	+3	+21	ASTM D 250
290	3.8	_		TOORTOWN		°C	-24	+3	+18	ASTM D 97
320	5.3		~	CETANE INDEX by four var. equ	ations		53.6	55.6	58,4	ASTM D 473
350	5,7					°C	77.0	81.6	84.4	ASTM D 611
370	4.2	-		AROMATICS						IP 391
400	4.2		i	Monocyclic		%v/v	16.6	19.3	20.3	
				Bicyclic	The second s	%v/v	5.3	10.0	11,3	
400+	34,2			Tri - Tetracyclic		7.4/4	0.1	0.4	0.5	••
				Total		%v/v	21.9	29.6	32.1	••
			-	REFRACTIVITY INDEX	@70°C		1.4464	1.4700	1.4809	ASTM D 174
			-	CARBON RESIDUE (Conradson)	101001010	%m/m			4	ASTM D 453
			4	KINEMATIC VISCOSITY @	40 °C	mm²/s	4.383			ASTM D 445
				p. 80	50 °C	mm²/s	3.966	3.97	15.78	* #
			~		50 °C	VBN	16.60	16.60	25.98	ASTM D 341
			1		60 °C	mm²/s		3.560	11.320	ASTM D 445

STANDARD CRUDE ASSAY

			TEST RUN	RESULTS			
		Stabilised Naphtha	Light Kerosene	Kerosene	Light Gasoil	Heavy Gasoil	Residue
Density	Kg/m3	711.30	787.60	812.60	840.00	866.60	905.20
Yield	% m/m	24.30	15.47	7.50	16.22	5.31	26.50
Distillation		D86	D86	D86	D86	D1160	D1160
IBP		36.5	150.9	156.9	225.5	252.0	235
10 %v	°C	62.7	167.3	212.8	280	354	385
30 %v	°C	81.6	180	236.1	293	400	465
50 %v	°C	99.5	190.5	248.2	313	425	518
70 %v	°C	116	203	257	330	450	568
90 %v	°C	137	212	269	360	475	
EBP		160	238	286	>371.0	504	

FIELD DATA

Crude oil database

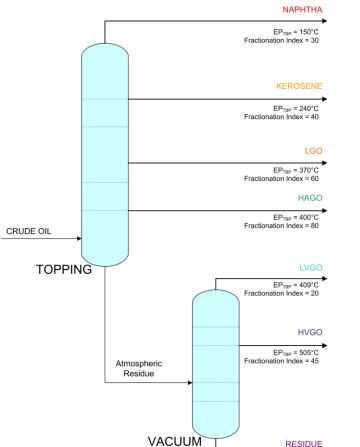
Cru	ides Lis	t	Percentage [%]			
ă	Russia					
•	KALG	KALININGRAD	8.00			
•	SIB5	SIBERIAN LIGHT	31.50			
•	URA9	URALS	48.50			
•	URAV	URA4 Vac.Dist	12.00			
то	TAL	100.00				

Blend composition

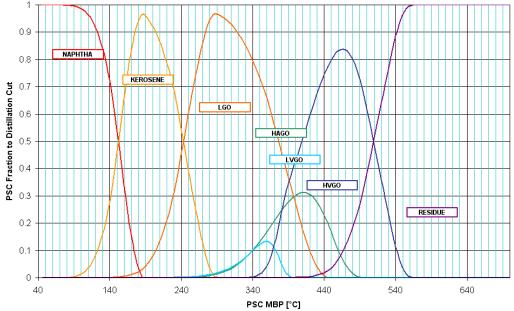
emperal Density @15* 0.858 0.8610 Kg/drr %Wt 1.200 1.162 1.814 4.60 22.07 29.97 38.10 49.20 81.40 25.72 Bull Pure Component Y Sulphur (Total) %Wit 1.770 TBP Recovered 70.0 %Wt 3.90 TBP Recovered@ 190.0 %Wt 21.90 TBP Recovered 235.0 %Wt 30.00 TBP Recovered@ %Wt 38.20 280.0 TBP Recovered 343.0 %Wt %Wt 49.30 Bull TBP Recovered@ 565.0 81.30 Cut Viscosity @100°C Cst 343.0 25.00

Crude oil database

Target Specifications


STANDARD BLEND

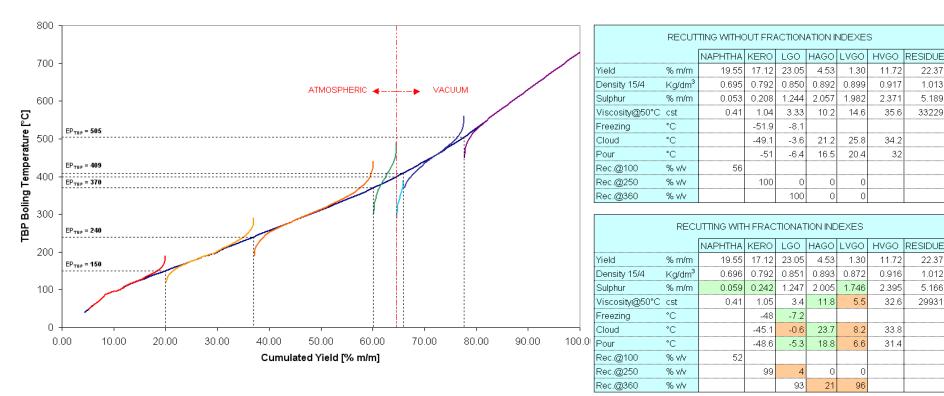
OPTIMIZED BLEND (DATA MINING)



ACCOUNTING FOR REAL FRACTIONATION

Detailed crude characterisation permits to embed directly in the LP model processes and activities usually realised externally like:

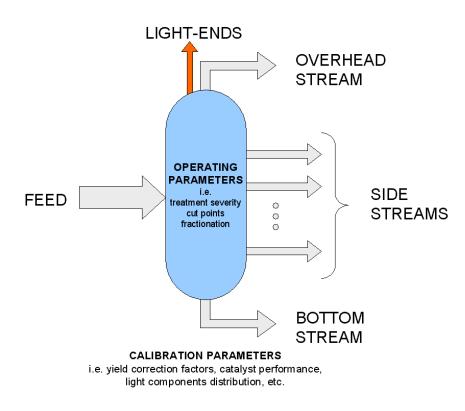
- Calculate oil mixes and fractions
- Simulate distillation units (with efficiency)
- Characterise Process units feedstock and effluents.



ACTUAL DISTILLATION RESULTS

Ignoring this effect introduces quality estimations errors affecting the optimal solution (overestimating refinery result).

The bigger impact is on viscosity, cold properties and distillation values.



Changes in the range 10-20 % Changes beyond 20 %

PLANT SIMULATION MODELS

Plant simulation models are integrated in the models and calculate effluents yields and quality as function of feedstock and of meaningful operating variables.

- Fine-tuneable to predict actual performance.
- Need for few input data
- Available processes are:
 - Distillation (primary and successive)
 - ✓ Hydrogenation and Desulphurisation.
 - ✓ Thermal Conversions (Coking, VB, THC)
 - Catalytic Conversions (Reforming, FCC, Hydrocracking)
 - Lubricant (Solvent Dearomatisation and Dewaxing, Catalytic Dewaxing).
- The same algorithms are applied both in SIMRAF and in PROLAV

SIMULATION MODELS – CATALYTIC PROCESSES

	PROCESS	VARIABLE	DESCRIPTION
C	CATALYTIC REFORMING	Feedstock Severity Pressure Fractionation Cycle advancement Model tuning	Density, Distillation, PNA, RVP Reformate C5 PLUS RON Average reactor Pressure Light Ends Distribution H2 and Reformate EOR Yield Correction Hydrogen and Reformate Yield Correction
F	LUID CATALYTIC CRACKING	Feedstock Severity Feed Type Fractionation Model tuning	Characterisation Factor (VABP, Sulphur, AP, SG) Gasoline 204°C Vol Conversion Hydrotreated or not Light Ends Distribution, TBP Cuts and Fractionation Efficiency Catalyst performance, C3-204 and Coke yield correction
N	/ILD HYDROCRACKING	Feedstock Conversion Severity HDS Severity H2 Consumption Fractionation	Density, Sulphur, Nitrogen, Bromine, Viscosity, Distillation Wt. Conversion of 375°C Plus fraction % of Feedstock sulphur removed Detailed HDS, HDN, HDBr, Conversion, Downgrade Light Ends Distribution, TBP Cuts and Fractionation Efficiency
F	HYDROTREATMENT	Feedstock HDS Severity HDN Severity HDBr Severity Yields H2 Consumption	Density, Sulphur, Nitrogen, Bromine, Distillation, Cold Properties % of Feedstock Sulphur removed or ppm Sulphur out % of Feedstock Nitrogen removed % of Feedstock Bromine number removed Fuel Gas and Wild Naphtha Detailed HDS, HDN, HDBr, Conversion, Downgrade

SIMULATION MODELS – THERMAL PROCESSES

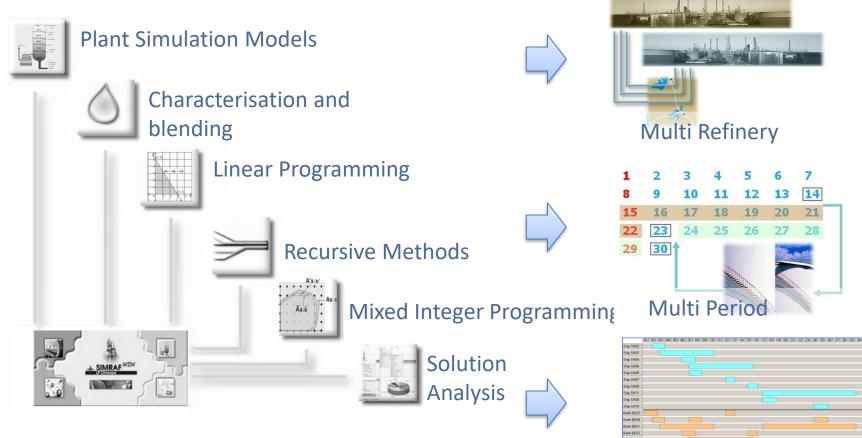
PROCESS	VARIABLE	DESCRIPTION
VISBREAKING	Feedstock	Density, Sulphur, Nitrogen, Cold Properties, Viscosity, Conradson, Metals, Asphaltenes, Distillation
	Severity	Wt. Conversion of 371°C Plus fraction
	Feed Type	Atmospheric / Vacuum Residue
	Fractionation	Light Ends Distribution, TBP Cuts and Fractionation Efficiency
	Model tuning	Residue Viscosity Calculation parameters
THERMAL CRACKING	Feedstock	Density, Sulphur, Nitrogen, Cold Properties, Viscosity, Conradson, Metals, Asphaltenes, Distillation
	Severity	Wt. Conversion of 371°C Plus fraction
	Feed Type	Percentage of Recycled VGO
	Fractionation	Light Ends Distribution, TBP Cuts and Fractionation Efficiency
	Model tuning	Residue Viscosity Calculation parameters
COKING	Feedstock	Density, Sulphur, Nitrogen, Cold Properties, Viscosity, Conradson, Metals, Asphaltenes, Distillation
	Feed Type	Atmospheric / Vacuum Residue
	Fractionation	Light Ends Distribution, TBP Cuts and Fractionation Efficiency
	Model tuning	Coke yield correction

SIMULATION MODELS – LUBRICANTS

PROCESS	VARIABLE	DESCRIPTION
SOLVENT DEAROMATISATION	Feedstock Solvent Temperature Model tuning	Density, Sulphur, Cold Properties, Viscosity, Viscosity Index Refraction Index, Wax Content, Distillation Solvent Feed Ratio Extraction Temperature PNA distribution over products for max/min operating variables values (fine tuning for actual unit performance)
SOLVENT DEWAXING	Feedstock Separation Model tuning	Density, Sulphur, Cold Properties, Viscosity, Viscosity Index Refraction Index, Wax Content, Distillation Hard / Soft wax ratio Hard wax oil content / soft wax oil content
CATALYTIC DEWAXING	Feedstock Severity HDS Severity Cycle Fractionation Model tuning	Density, Sulphur, Cold Properties, Viscosity, Viscosity Index Refraction Index, Wax Content, Distillation Product Pour Point % of Feedstock sulphur removed Cycle advancement Light Ends Distribution. SOR/EOR Light Ends and Naphtha Yields, Min/Max/Design LHSV, SOR/Min/Max Reactor Temperature, Hydrogen consumption (Detailed HDS, HDN, HDBr, Conversion, Downgrade)

SIMRAF – LP PLANNING TOOL: APPLICATIONS

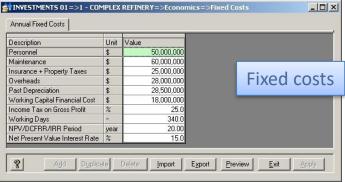
Conceived by refinery experts it an "industry oriented" LP tool.


Intuitive for oil downstream professionals supports the addressing of strategic and ordinary planning problems:

SIMRAF TECHNOLOGIES

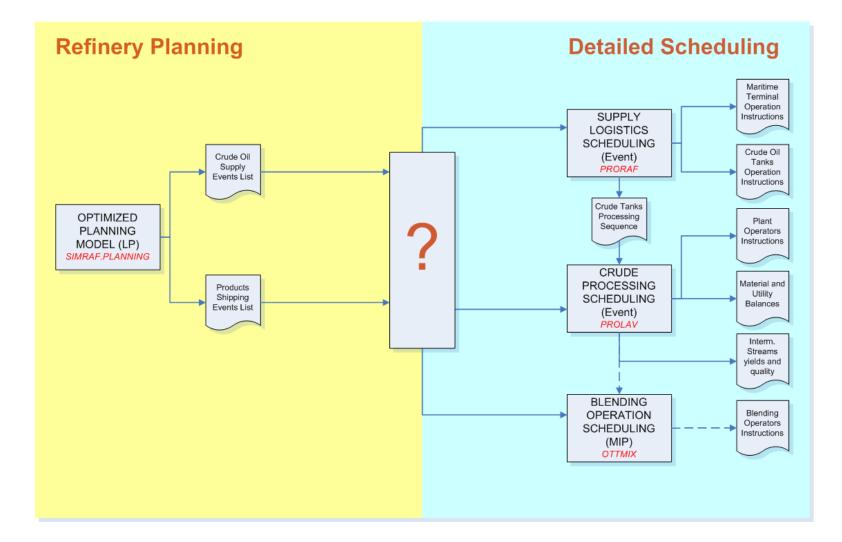
The competitive advantage results from the availability in the same environment of simulation and optimisation technologies:

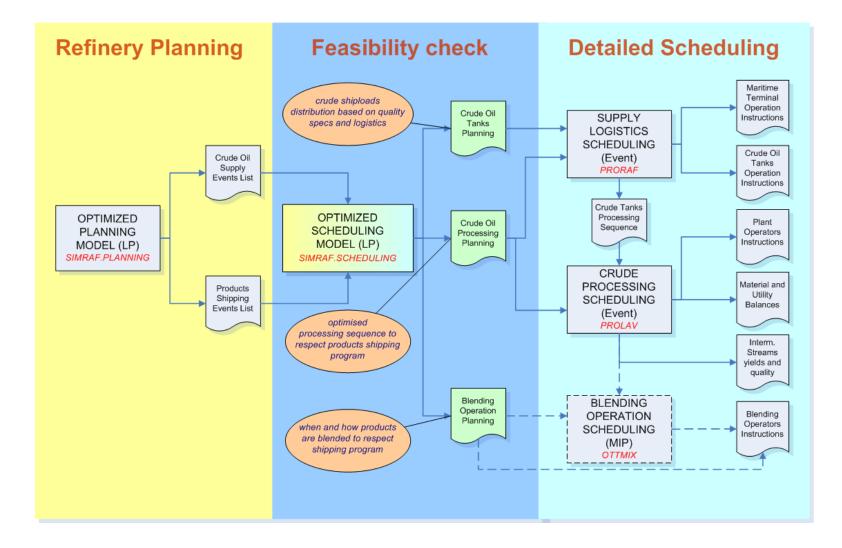
Optimised Scheduling



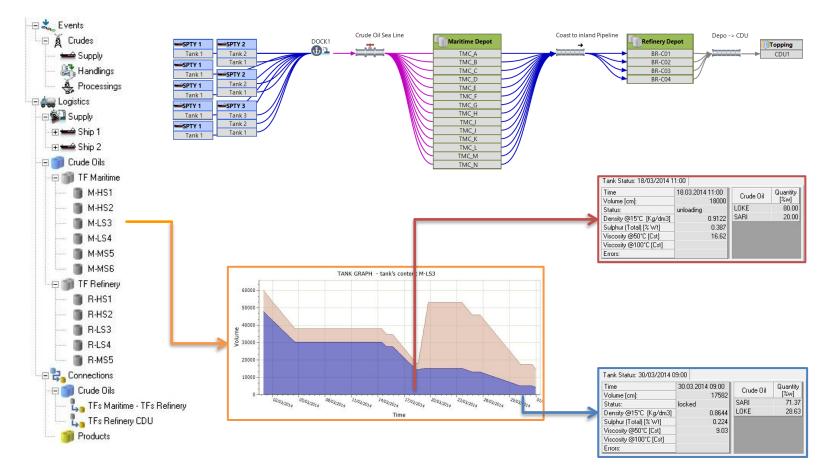
STRATEGIC PLANNING STUDIES

SIMRAF disposes of particular features useful in case of strategic Planning studies for new investments.

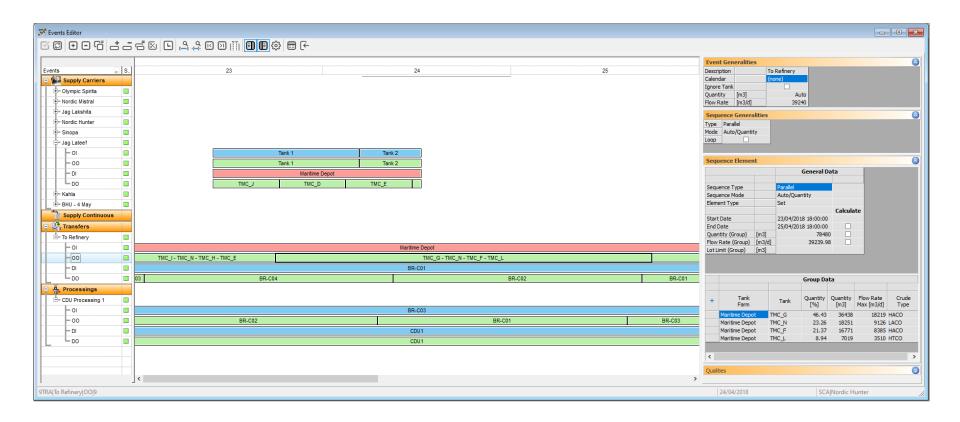

Unit ype		MH C CO C		SU FY			start value lo with start capacity Co	DEPRECIATION	INTEREST RATE	
escription		Mild Hydrocr. Fl			lant		capacity co			
emplate	V doudant	inia riyaroor. Tr		or oranger				↓		
ecursion	YES	YES Y	ES YES	YES		N		•	1 I	
apacity ton/		3000	1700	2000	70			SPECIFIC		
ream days per year days		330	330	330	330				←	
apital cost \$				366800.0 118491				COST [\$/TON]		
terest rate % mortization period vear	8.0 r 10	8.0 10	8.0	8.0	8.0				-	
nortization period year ale factor	0.7	0.65	0.6	10	10	_				
pecific cost \$/to			30.9	2						
				🚽 Car	oital costs	5		OPTIMIZATION PROCESS	Recurs	sive mechanism
								¬ 🗶		
									N	
	IIC RESULTS	UNI		ALUE	\bigwedge			T 🗲 CHANGE		
Sales	IIC RESULTS	UNI \$	3,	,426,333,174	\bigwedge			T 🗲 CHANGE		
Sales Purchases		UNI \$ \$	3,	,426,333,174 <mark>,767,892,727</mark>				T 🗲 CHANGE		
Sales Purchases Variable Cos		UNI \$ \$ \$	3,	,426,333,174 ,767,892,727 11,698,200	$\langle \rangle$			T 🗲 CHANGE		
Sales Purchases Variable Cos Personnel	sts	UNI \$ \$ \$ \$	3,	,426,333,174 ,767,892,727 11,698,200 52,058,822	A			T 🗲 CHANGE		
Sales Purchases Variable Cos Personnel Maintenanc	sts	\$ \$ \$ \$ \$	3,	,426,333,174 ,767,892,727 11,698,200 52,058,822 62,470,586	$\langle \rangle$	INVESTM	I = Io • (C/Co)	CHANGE	RECURSION	
Sales Purchases Variable Cox Personnel Maintenanc Insurance +	sts	\$ \$ \$ \$ \$ \$ \$	3,	,426,333,174 ,767,892,727 11,698,200 52,058,822 62,470,586 26,029,411	$\langle \rangle$		INVESTMEN I = Io+ (C/Co)'	T 🗲 CHANGE	RECURSION	
Sales Purchases Variable Cox Personnel Maintenanc Insurance + Overheads	sts e Property Taxes	\$ \$ \$ \$ \$	3,	426,333,174 767,892,727 11,698,200 52,058,822 62,470,586 26,029,411 29,152,940	$\langle \rangle$	Annual Fixe	INVESTMEN I = Io+ (C/Co)'	CHANGE	RECURSION	
Sales Purchases Variable Co: Personnel Maintenanc Insurance + Overheads Total Produi	sts e Property Taxes ction Costs	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3,	426,333,174 767,892,727 11,698,200 52,058,822 62,470,586 26,029,411 29,152,940 949,302,686		Annual Fixe	ENTS 01=>1 - COMPLEX	REFINERY=>Economics=	RECURSION	
Sales Purchases Variable Cos Personnel Maintenanc Insurance + Overheads Total Produ Interest on I	sts e Property Taxes ction Costs nvestments Det	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3,	426,333,174 767,892,727 11,698,200 52,058,822 62,470,586 26,029,411 29,152,940 ,949,302,686 27,560,640			ENTS 01=>1 - COMPLEX	CHANGE	RECURSION	
Sales Purchases Variable Cos Personnel Maintenanc Insurance + Overheads Total Produ Interest on I Interest on v	sts Property Taxes ction Costs nvestments Det working capital	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3,	426,333,174 767,892,727 11,698,200 52,058,822 62,470,586 26,029,411 29,152,940 949,302,686 27,560,640 18,741,176		Annual Fixe Description Personnel Maintenanc	ENTS 01=>1 - COMPLEX ed Costs unit e \$	REFINERY=>Economics= Value 50,000,000 60,000,000	RECURSION	
Sales Purchases Variable Co: Personnel Maintenance Insurance + Overheads Total Produ Interest on I Interest on v Fixed Depre	e Property Taxes ction Costs nvestments Det working capital	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 2 2	426,333,174 767,892,727 11,698,200 52,058,822 62,470,586 26,029,411 29,152,940 949,302,686 27,560,640 18,741,176 18,743,558		Annual Fixe Description Personnel Maintenanc Insurance +	ENTS 01=>1 - COMPLEX ed Costs Property Taxes \$	REFINERY=>Economics= Value 50,000,000 25,000,000	>Fixed Costs	
Sales Purchases Variable Co: Personnel Maintenanc Insurance + Overheads Total Produ Interest on I Interest on v Fixed Depre Valued Dep	e Property Taxes ction Costs nvestments Det working capital	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3,	426,333,174 767,892,727 11,698,200 52,058,822 62,470,586 26,029,411 29,152,940 ,949,302,686 27,560,640 18,741,176 673,528 471,322	$\langle \rangle$	Annual Fixe Description Personnel Maintenanc Insurance + Overheads	ENTS 01=>1 - COMPLEX ents 01=>	CHANGE ? ? REFINERY=>Economics= Value 50,000,000 25,000,000 28,000,000 28,000,000	RECURSION	
Sales Purchases Variable Co: Personnel Maintenanc Insurance + Overheads Total Produc Interest on t Interest on t Fixed Depre Valued Dep Total Costs	e Property Taxes ction Costs nvestments Det working capital iciation reciation	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3, 2 2 1 result	426,333,174 767,892,727 11,698,200 52,058,822 62,470,586 26,029,411 29,152,940 ,949,302,686 27,560,640 18,741,176 673,528 471,322 749,352	\checkmark	Annual Fixe Description Personnel Maintenanc Insurance + Overheads Past Deprec	ENTS 01 =>1 - COMPLEX ed Costs Property Taxes \$ sistion \$	CHANGE ? Change ? <td< td=""><td>>Fixed Costs</td><td></td></td<>	>Fixed Costs	
Sales Purchases Variable Cos Personnel Maintenanc Insurance + Overheads Total Produ Interest on I Interest on v Fixed Depre Valued Dep Total Costs Taxable inco	e Property Taxes ction Costs nvestments Det vorking capital reciatio Fir ome	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3, 2 2 1 result	426,333,174 767,892,727 11,698,200 52,058,822 62,470,586 26,029,411 29,152,940 349,302,686 27,560,640 18,741,176 673,528 471,322 749,352 349,583,821	$\langle \rangle$	Annual Fixe Description Personnel Maintenance Insurance + Overheads Past Deprec Working Ca	ENTS 01=>1 - COMPLEX ents 01=>	CHANGE ? ? REFINERY=>Economics= Value 50,000,000 25,000,000 28,000,000 28,000,000	>Fixed Costs	
Sales Purchases Variable Co: Personnel Maintenanc Insurance + Overheads Total Produi Interest on i Interest on v Fixed Depre Valued Dep Total Costs	e Property Taxes ction Costs nvestments Det working capital reciation reciation Fir ome	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 2 2 1 result	426,333,174 767,892,727 11,698,200 52,058,822 62,470,586 26,029,411 29,152,940 ,949,302,686 27,560,640 18,741,176 673,528 471,322 749,352	$\langle \rangle$	Annual Fixe Description Personnel Maintenanc Insurance + Overheads Past Deprec Working Ca Income Tax Working Da	ENTS 01 =>1 - COMPLEX ed Costs Property Taxes \$ station \$ pital Financial Cost \$	Value Solution Solution <t< td=""><td>>Fixed Costs</td><td></td></t<>	>Fixed Costs	



TURNING PLANNING INTO REALITY...


PLANNING FEASIBILITY CHECK

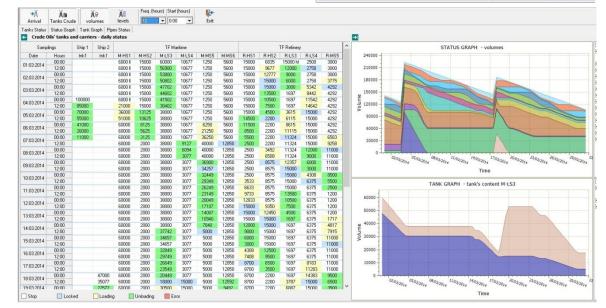
PRORAF: LOGISTICS SIMULATION


Considering supply, handling and processing events calculates the hourly evolution of each tank status, returning volume and composition for each tank to be processed.

R�/METHEUS

PRORAF: EVENTS EDITOR

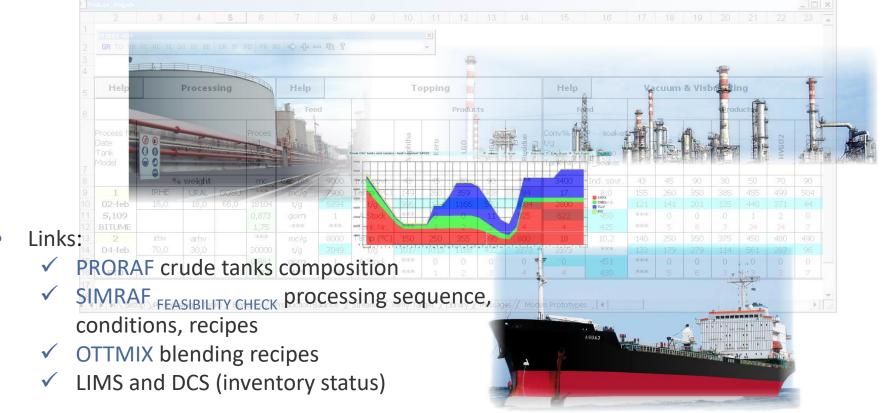
This environment enables the definition of transfer events and the setting of related parameters (type, calculation mode, origin, destination, volume, flow rate and quality constraints).



PRORAF: CALCULATION ENGINE

Manages the service requests for supply, handling and processing events to produce an operative plan considering:

- Volume and pumping (Load/Unload) constraints
- Status (volume and content) and availability
- Handling operations (Drainage, Measurements)
- Quality specifications
- Pipeline quality tracking
- Tank selection logics


				[Handled Quantity		Frequency [Hoursl	24	
Initial Ti		Final Ti		Operation	[m3]		Sampli		Volume	Status
01.03.2014	00:00	04.03.2014	16:00	Unloading	-2200			-	[m3]	
04.03.2014	16:00	04.03.2014	19:00			0	02.03.2014	00:00	53800	Unloading
04.03.2014	19:00	14.03.2014	12:00			0	03.03.2014	00:00	47702	
4.03.2014	12:00	15.03.2014	01:00	Unloading	-334		04.03.2014	00:00	41502	
15.03.2014	01:00	15.03.2014	04:00	Locked		0	05.03.2014	00:00	38000	Stop
5.03.2014	04:00	15.03.2014	18:00			0	06.03.2014	00:00	38000	
15.03.2014	18:00	18.03.2014	12:00	Unloading	-1665		07.03.2014	00:00	38000	
18.03.2014	12:00	18.03.2014	15:00			0	08.03.2014	00:00	38000	
18.03.2014	15:00	19.03.2014	20:00		3507		09.03.2014	00:00	38000	
9.03.2014	20:00	19.03.2014	23:00			0	10.03.2014	00:00	38000	
19.03.2014	23:00	23.03.2014	15:00			0	11.03.2014	00:00	38000	
23.03.2014	15:00	24.03.2014	19:00	Unloading	-710		12.03.2014	00:00	38000	
24.03.2014	19:00	24.03.2014	22:00			0	13.03.2014	00:00	38000	
4.03.2014	22:00	25.03.2014	16:00			0	14.03.2014	00:00	38000	
25.03.2014	16:00	30.03.2014	07:00		-2838		15.03.2014	00:00	34657	Unloading
30.03.2014	07:00	30.03.2014	10:00			0	16.03.2014	00:00	32849	
30.03.2014	10:00	31.03.2014	14:00	Stop		0	17.03.2014	00:00	26649	
31.03.2014	14:00	01.04.2014	00:00	Unloading	-284	2	18.03.2014	00:00	20449	
							19.03.2014	00:00	30500	Loading
							20.03.2014	00:00	53077	Stop
							21.03.2014	00:00	53077	
							22.03.2014	00:00	53077	
							23.03.2014	00:00	53077	
							24.03.2014	00:00	50494	Unloading
							25.03.2014	00:00	45969	Stop
							26.03.2014	00:00	43644	Unloading
							27.03.2014	00:00	37444	
							28.03.2014	00:00	31244	
							29.03.2014	00:00	25202	
							30.03.2014	00:00	19002	
							31.03.2014	00:00	17582	Stop
							01.04.2014	00:00	14741	Unloading

PROLAV: WIDE REFINERY MODEL

PROLAV finds the best scheduling program considering supply, logistics and processing constraints:

• Simulates the processing of a sequence of crude tanks. Refinery operation is accurately modeled, accounting for any processing constraint and flexibility.

₽⊕∕1⁄IE1HEUS

PROLAV: FEATURES

PROLAV applies crude characterization database and plant simulation models to simulate refinery daily operation calculating:

- Yields and refinery material balance
- Fuels and utilities
- Hydrogen balance
- Inventories
- Operative instructions
- KPIs
- Production control
- Energy performance
- Blending

The model is built to follow and reproduce client's consolidated operative flexibilities and is operated through an Excel interface.

File	Hon	ne In	serisci	Layo	ut di pag	ina	Formule	Dat	ti Rev	isione	Visual	izza Svilu	oqqu	Compor	nenti aggi	untivi	PROLAV		
Crude Mix		Visbreak	<u> </u>	<u> </u>	-UE Thermal		-DE HDS	Light Ends	-> Gasoline		≯ Fuel Oil	Production Balance	Update Tanks	Run one	Run more	Field Data	Lab. Data	 Add Remove Template 	🕜 Help 🧟 Refresh 🚟 Menu
				Plants					E	Blending		Finali	ze	Ru	un	Import	Tanks	Utili	ties

5	Help		Proces	sing		Help			То	pping	1			Help	
6						Feed					Feed				
7	Process Nº Date Tank Model	cor	mposition	Proces sed dens %S				Naphtha	Kera	160	D9H	Residue	Conv% t/g Stock Tank Nr	Р Т. Т_	
8		% weight mc		Cap max	9000	Ind. sovr.	43	45	70	90	Notek	3400	Ir		
9	1	IRHE	URAL	GOSU	***	mc/g	7900	Temp (°C)	149	260	359	408	784	17	-
10	02-feb	16,0	18,0	66,0	18104	t/g	6894	t/g	996	1134	1166	570	3004	2800	
11	S,109				0,873	days	1	A Stock	***	0	0	11	825	622	
12	BITUME				1,75	stotots	solok	Tank Nr.	*o*o*	1	2	3	4	4	
13	2	hv	arhv			mc/g	8000	Temp (ºC)	150	250	355	395	800	18	T
14	04-feb	70,0	30,0		30000	t/g	7049	t/g	1017	1013	1186	432	3373	3373	
15					0,881	days	1	A Stock	*o*o*	0	0	0	0	0	
16	STD				2,32	жжж	***	Tank Nr.	***	1	2	3	4	4	1
17 18 ↓ ↓	► N \ Sett	Process Runs N SetUp \Processing / Tanks / Blending / Production Balance / Streams / Verify Target / Library / Messages / Models Prototypes , ¹													

THANK YOU!

Contact details:

PROMETHEUS S.R.L.

Corte Lambruschini - Torre A Piazza Borgo Pila, 40 16129 Genoa – ITALY

Aurelio Ferrucci – Executive V.P.

Telephone:	+39 010 542011 +39 010 9752649
Fax:	+39 010 581451
Web site:	www.prometheus-systems.com ; www.prometh.it
E-Mail:	aurelio.ferrucci@prometh.it

